
A very sketchy outline of some basic harmonic analysis (Fourier analysis)

This is some notes of very sketchy outline for basic harmonic analysis (Fourier analysis). In this, we
will approach such topics from one specific point of view : approximations in Banach spaces.

This note closely follows the approach of the text “An Introduction to Harmonic Analysis” by Yitzhak
Katznelson.

Question: Let B be a Banach space and let x ∈ B. How can we approximate x via x = limxn,
where each xn is in some Bn ⊂ B, and structure of Bn is easier to understand.

In case B = C[0, 1], the following Taylor expansions

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

and
sinx = x− x3

3!
+

x5

5!
· · ·

are typical examples of approximating ex and sin x via polynomials.

Approximations in Hilbert Spaces
In case B is a Hilbert space. That is, B is a Hilbert space H. We just need to find a orthonormal

basis {ei}i∈A of H. Then we have
x =

∑
i∈A

⟨x, ei⟩ei,

which is exactly an approximation of x via sub-Hilbert spaces which are generated by subsets of {ei}i∈A.

Approximations in Banach Spaces
For general Banach space B, it is not that easy to do approximations just as the case above for

Hilbert spaces. There are no such things as orthonormal basis and no such things as Parseval’s theorem
for Banach spaces.

Consider L1(T, µ), where the measure µ is the probability Lebesgue measure. That is, µ is translation
invariant and µ(T) = 1. For simplicity of notation, we use L1(T) to denote L1(T, µ).

Easy to check that C(T) ⊂ L1(T) and Lp(T) ⊂ L1(T) for all p > 1.
As will show later in this note, lots of results that hold for L1(T) also hold for C(T) and Lp(T) for

p > 1.
According to the discussions above for Hilbert spaces, for any f ∈ L2(T), it follows that

f = lim
n→∞

n∑
k=−n

⟨f, zn⟩zn =
n∑

k=−n

1

2π

∫ 2π

0

f(s) · e−iks ds · eikt

in L2(T).
However, for any f ∈ L1(T), we do not always have

f = lim
n→∞

n∑
k=−n

⟨f, zn⟩zn
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in L1(T).
One approach to show this is to use the Uniform Boundedness Theorem. One good explanation of

this kind can be found in Rudin book, as an application of the Uniform Boundedness Theorem.
Remark: As for C(T), it is easy to see that it also can be identified as, for any given L ∈ R>0,

L-periodic functions over R.

Fact: Although we can not expect to have f = limn→∞
∑n

k=−n⟨f, zn⟩zn for f ∈ L1(T), we can fix
this problem by modifying the way how sums are made. That is, for any given f ∈ L1(T), let

σ0(f) = ⟨f, 1⟩ = 1

2π

∫ 2π

0

f(t) dt, σ1(f) =
1∑

k=−1

⟨f, zk⟩zk, σ2(f) =
2∑

k=−2

⟨f, zk⟩zk, · · · .

Although we do not surely have σn(f) → f in L1(T), we do have Sn(f) → f in L1(T), where

S0(f) = σ0(f), S1(f) =
σ0(f) + σ1(f)

2
, · · · , Sn(f) =

∑n
k=0 σk(f)

n+ 1
, · · · .

Those {Sn}s are just the algebraic average of the naive {σn}s, and are called Cesàro sums.
A bit of easy calculation will indicate that

Sn(f) =
n∑

k=−n

(
1− |k|

n+ 1

)
⟨f, zk⟩zk.

For the rest of the notes, we will give a sketchy proof of the fact above.

Definition 1. For f ∈ L1(T), we define f̂(n), the n-th Fourier coefficient of f , to be

f̂(n) = ⟨f, zn⟩ = 1

2π

∫ 2π

0

f(t)e−int dt.

Proposition 2. Let f, g ∈ L1(T). Then
i) ̂(f + g)(n) = f̂(n) + ĝ(n) ;
ii) α̂f(n) = αf̂(n), ∀α ∈ C;
iii) f̂(n) = f̂(−n) ;
iv) f̂τ (n) = f̂(n) · e−inτ , where fτ is defined as fτ (t) = f(t− τ).
v) |f̂(n)| ≤ 1

2π

∫ 2π

0
|f(t)| dt = ∥f∥L1(T)

Corollary 3. For f ∈ L1(T) and {fk} ⊂ L1(T), if fk → f in L1-norm, then f̂k(n) → f̂(n) uniformly
(regardless of n).

Theorem 4. Let f ∈ L1(T). Assume f̂(0) = 0 and define

F (t) =

∫ t

0

f(s) ds.

Then F is continuous, 2π-periodic and F̂ (n) = 1
in
f̂(n).
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Remark: This theorem above indicates that, under mild conditions, the Fourier coefficient of the
integrand is not quite different from the Fourier coefficient of the original function. It is then natural
to see that, under mild conditions, the Fourier coefficients of the derivatives are not quite different from
the Fourier coefficients of the original functions. That is one of the reasons why Fourier analysis is useful
in solving differential equations.

Definition 5. For f, g ∈ L1(T), we define f ∗ g, the convolution of f and g, as

(f ∗ g)(t) =
∫
T
f(t− τ)g(τ) dµ =

1

2π

∫ 2π

0

f(t− τ)g(τ) dτ.

Proposition 6. For f, g ∈ L1(T), f ∗ g is also in L1(T) and

∥f ∗ g∥L1(T) ≤ ∥f∥L1(T) · ∥g∥L1(T) .

Proposition 7. For f, g ∈ L1(T), we have

(̂f ∗ g)(n) = f̂(n) · ĝ(n).

Proposition 8. For f, g, h ∈ L1(T), we have
i) f ∗ g = g ∗ f ;
ii) f ∗ (g + h) = f ∗ g + f ∗ h ;
iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Lemma 9. Assume f ∈ L1(T) and let φ(t) = eint for certain n ∈ Z. Then

(f ∗ φ)(t) = f̂(n) · eint.

Remark: Following the proof of the lemma above, we can easily check the following: Let φn(t) =∑n
k=−n(1−

|k|
n+1

)eint. Then, for any f ∈ L1(T),

Sn(f) =
n∑

k=−n

(
1− |k|

n+ 1

)
⟨f, zk⟩zk = f ∗ φn.

In order to show that Sn approaches f with respect to L1 norm, we just need to show that f ∗ φn,
the convolution of f and φn, is approaching f as n → ∞. This is not totally new for us, as we have
done similar things already in previous lectures on mollifiers (just recall how we can show that C∞

c (R)
is dense in C0(R) using mollifiers).

Definition 10. A summable kernel is a sequence {Kn} of continuous 2π-periodic functions s.t.
1) 1

2π

∫ 2π

0
Kn(t) dt = 1 ;

2) 1
2π

∫ 2π

0
|Kn(t)| dt < ∞ ;

3) For any delta with 0 < δ < π, limn→∞
∫ 2π−δ

δ
|Kn(t)| dt = 0.

If all the Kn are positive functions, then we call this {Kn} a positive summable kernel.

Lemma 11. Let B be a Banach space, and let φ be a continuous B-valued functions on T. Assume that
Kn is a summable kernel. Then

lim
n→∞

1

2π

∫ 2π

0

Kn(t)φ(t) dt = φ(0).
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Proposition 12. Let f ∈ L1(T, µ), where µ is the Lebesgue measure. For any τ ∈ [0, 2π], define fτ as
fτ (t) = f(t− τ). Then for any τs → τ , we have fτs → fτ in L1(T, µ).

Remark: In the proposition above, if µ is no longer the Lebesgue measure, then the result might
not hold. For example, consider the case µ is a point mass measure that is concentrated on one single
point only.

Lemma 13. Let f ∈ L1(T) and let {Kn} be a summable kernel. Then

f = lim
n→∞

1

2π

∫ 2π

0

Kn(τ)fτ dτ in L1(T),

where fτ is defined as fτ (t) = f(t− τ).

In this lemma, note that the right hand side of the equation f = · · · is the Riemann integration of a
L1(T)-valued continuous function Kn(τ)fτ . Note that the continuity of Kn follows from the definition
of summable kernel and the continuity of fτ follows from the proposition above.

Lemma 14. Let K : T → R be continuous and let f ∈ L1(T). Then

1

2π

∫
K(τ) · fτ dτ = f ∗K,

where fτ is defined as above.

In the lemma above ,note that the left hand side of the equation above is the Riemann integration of
a L1(T)-valued continuous function K(τ) · fτ . In contrast, the right hand side is a function whose value
on each point t is defined as (f ∗K)(t) = 1

2π

∫ 2π

0
f(t− τ)K(τ) dτ . One of the results above ensures that

∥f ∗K∥L1(T) ≤ ∥f∥L1(T) · ∥K∥L1(T), which then ensures that this pointwisely defined function f ∗K is in
L1(T).

Based on those lemmas, we immediately have the following theorem.

Theorem 15. Let {Kn} be a summable kernel. Then for any f ∈ L1(T), we have

f = lim
n→∞

f ∗Kn in L1(T).

Following the proof of the theorem above, we have:

Corollary 16. Let {Kn} be a summable kernel. Let a Banach space B be Lp(T) with p > 1 or let B be
C(T). Then for any f ∈ B, we have

f = lim
n→∞

f ∗Kn in B.

Definition 17. {Kn} with Kn =
∑n

k=−n

(
1− |k|

n+1

)
eikt is called the Fejér kernel.

Some easy calculations should lead you to the following proposition.

Proposition 18. The Fejér kernel is a positive summable kernel.

So far, we have proved Sn(f) → f . That is, we have the following.
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Proposition 19. Let {Kn} be a summable kernel. Let a Banach space B be Lp(T) with p > 1 or let B
be C(T). For any f ∈ B, we have

f = lim
n→∞

f ∗Kn = lim
n→∞

Sn(f) =
n∑

k=−n

(
1− |k|

n+ 1

)
⟨f, zk⟩zk.

Based on this result, we can give an elegant proof of the Riemann-Lebesgue Lemma.

Riemann-Lebesgue Lemma: Let f ∈ L1(T). Then

lim
|n|→∞

f̂(n) → 0.

Proof. Let {Kn} be the Fejér kernel. Then ∥f − f ∗Kn∥L1(T) → 0. For any ϵ > 0, there exists N ∈ N,
such that

∥f − f ∗KN∥L1(T) < ϵ.

Note that for any n with |n| > N , f̂ ∗KN(n) = 0. It then follows that, for any n with |n| > N ,

f̂(n) = f̂(n)− 0 = f̂(n)− f̂ ∗KN(n) =

∧

(f − f ∗KN)(n).

It then follows that

|f̂(n)| = |
∧

(f − f ∗KN)(n)| ≤ ∥f − f ∗KN∥L1(T) < ϵ

for all n with |n| > N .

Remark: As eint = cos(nt) + i sin(nt), and noting the Problem 10 of HW 4 for last term (“Real
and Complex Analysis (I)”), which states that for any bounded measurable function f on [0, 1], we have∫ 1

0
f(x) sin(nx) dx → 0 as n → ∞, you should be able to figure out, noting that any L1 function on

a finite measure space can be approximated by bounded simple functions, a brute force proof of the
Riemann-Lebesgue Lemma above.
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